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Bias in image classification

• Spurious correlations between class labels and samples;

• Shortcuts learned by models to minimize empirical risk;

• Present in most training samples (bias-aligned); 

• Absent in a small percentage (bias-conflicting);

• A model learns these spurious correlations (instead of semantic attributes).

Bias-conflicting/unbiased

Bias-Aligned
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Synthetic dataset

9

Corrupted Cifar-10

 60.000 images

 32x32 pixels

 Texture biases (Brightness, 
Contrast, Gaussian Noise, 
Frost, Elastic Transform, 
Gaussian Blur, Defocus Blur, 
Impulse Noise, Saturate)

 Training set with different rho 

 Test set: 90% Bias-Conflicting 
and 10% aligned 

Bias-aligned/biased

Colored MNIST

Bias-conflicting/unbiased

 60.000 images

 32x32 pixels

 Texture biases (Brightness, 
Contrast, Gaussian Noise, 
Frost, Elastic Transform, 
Gaussian Blur, Defocus Blur, 
Impulse Noise, Saturate)

 Training set with different rho 

 Test set: 90% Bias-Conflicting 
and 10% aligned 

 60.000 images

 28x28 pixels

 Digit correlates with its color

 Training set with different rho 

 Test set: 90% Bias-Conflicting 
and 10% aligned 
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BAR (Biased Action Recognition)

Waterbirds

BAR

 2.595 images
 224x224 pixels
 Bias: Setting in which an 
action is perfomed

 No bias annotation

BFFHQ

 21.200 images
 224x224 pixels
 Bias: Gender 
 Training set: 95% bias 
aligned

 Test set : Balanced

BFFHQ from Flickr-Faces-HQ

WATERBIRDS

 11.968 images

 224x224 pixels

 CUB + Places 

 Bias: Background 

 Training set: 95% bias 
aligned

 Test set : Balanced

Real-world datasets (1) 
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CelebA

 202,599 images
 224x224 pixels
 40 annotated attributes;
Several biases (e.g., 
color hair, gender, 
make-up)

Real-world datasets  

CelebA
(Blond / Not Blond)
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Bias mitigation approaches

• Intuitively, methods for mitigating the model’s prediction dependency on bias;

• Increase the generalization and robustness of a trained model.

Landbird from waterbirds 
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Bias mitigation approaches

• Intuitively, methods for mitigating the model’s prediction dependency on bias;

• Increase the generalization and robustness of a trained model.

Debiased model 
Biased model

Debiasing method
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Model debiasing in Image Classification 

• Supervised does not refer to target labels 

• Supervised indicates approaches relying on bias information for mitigation;

• Unsupervised debiasing do not assume any prior information on bias

Supervised (Bias label required) Unsupervised (No bias information)

Nam, Junhyun, et al. “Learning from failure: De-biasing classifier from biased classifier.” 
Advances in Neural Information Processing Systems 33 (2020): 20673-20684.

Sagawa, Shiori, et al. "Distributionally robust neural networks for group shifts: On the 
importance of regularization for worst-case generalization." arXiv preprint arXiv:1911.08731 
(2019).
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Basic intuition  

Supervised approaches

Fare clic per inserire note

• If bias labels are known, it is possible to reweight or augment the training samples;

• The model can be forced to focus more on bias-conflicting samples; 

• Debiasing can happen at the level of features or predictions
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Group optimization: GroupDRO 

Supervised approaches

Fare clic per inserire note

Naïve alternative

Sagawa, Shiori, et al. "Distributionally robust neural networks for group shifts: On the importance of regularization for worst-case generalization." arXiv 
preprint arXiv:1911.08731 (2019).
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End: Features disentanglement

Supervised approaches 

Disentangle samples 
sharing the same bias

Entangle samples sharing the 
same target but with different 

bias

Tartaglione, E., et al., (2021). End: Entangling and disentangling deep representations for bias correction. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 13508-13517).
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• Supervised approaches rely on bias information for model debiasing;

• They include dataset cleaning, post-processing or in-model approaches. 

• They are usually more accurate than unsupervised counterpart; 

Recap

Supervised approaches 

Fare clic per inserire note
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Towards unsupervised debiasing 

• How can we reweight samples for bias mitigation, if bias is unknown?

Biased feature space 

Dataset with unknown bias labels

Bias identification

Model debiasing

First step 

Second step 

UnBiased feature space

Biased model
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Bias identification

• Bias identification allows to produce pseudolabels that can be used for debiasing;

• Methods exploit the feature space (e.g., MoDAD, George) or predictions (e.g., JTT);

• The more precise bias identification, the better the debiasing performance. 

Model debiasing

• Bias-conflicting augmentation and upsampling (e.g., MoDAD, Just Train Twice);

• Loss re-weighting (e.g., Learning with a Biased Committee);

• Adversarial debiasing (e.g., BiasAdv).
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Two-steps unsupervised approaches  

Fare clic per inserire note

• A biased model has a higher probability to misclassify a bias-conflicting sample. 

• Two-step method: bias identification + debiasing 

• The error set is identified as:

• ERM up sampling the samples in the error set (predicted bias-conflicting) 

 

Liu, Evan Z., et al. "Just train twice: Improving group robustness without training group information." International Conference on Machine Learning. PMLR, 2021.
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• Bias-Aligned samples are correctly classified by a committee 

• Backbone pre-trained with BYOL 

• Random sample of m subsets 

• Weight  based on consensus 

• Weighted ERM Kim, Nayeong, et al. "Learning debiased classifier with biased committee." Advances in Neural 
Information Processing Systems 35 (2022): 18403-18415.

Two-steps unsupervised approaches  
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End-to-end methods

Nam, Junhyun, et al. “Learning from failure: De-biasing classifier from biased classifier.” 
Advances in Neural Information Processing Systems 33 (2020): 20673-20684.

• Model debiasing is performed without requiring bias identification  

• They usually still employ an auxiliary models to provide indirect information on bias



27A journey through model debiasing: from methods to applications

Learning from Failure

Fare clic per inserire note

Nam, Junhyun, et al. “Learning from failure: De-biasing classifier from biased classifier.” Advances in Neural Information 
Processing Systems 33 (2020): 20673-20684.

• Bias affects the model only if it is 
easier to learn than the target 
attribute;

• GCE loss function to amplify easy 
samples (bias-aligned);

• Model D (Debiased) is trained with 
Weighted CE according to:
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 How to obtain a precise bias identification; 

 How to avoid using bias annotated (or not) validation sets;

 How to avoid bias-conflicting memorization;

 How to discover bias in models;

 Real-world datasets for benchmarking.

Open challenges in model debiasing
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Looking at model debiasing through the lens of 
anomaly detection (MoDAD) 

29

Principal Component Analysis

Anomaly Detection

One-Class Support Vector Machine

Pastore, V. P., Ciranni, M., Marinelli, D., Odone, F., & Murino, V. (2025, February). Looking at Model Debiasing through the Lens of Anomaly Detection. In 2025 IEEE/CVF Winter 
Conference on Applications of Computer Vision (WACV) (pp. 2548-2557). IEEE.
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Model trained with Generalized 
Cross-Entropy Loss

OneClass-SVM

Debiased Model

Anomaly
Detection

ERM Biased Model

Fine-tuning

Bias-Conflicting
Upsampling  & Augmentation 

Step 1: BIAS 
IDENTIFICATION

Step 2: MODEL 
DEBIASING

Bias-conflicting/aligned 
samples predictions

embedding
s

Method overview 

Fine-tuning

Bias-Conflicting
Upsampling  & Augmentation 

30

Pastore, V. P., Ciranni, M., Marinelli, D., Odone, F., & Murino, V. (2025, February). Looking at Model Debiasing through the Lens of Anomaly Detection. In 2025 IEEE/CVF Winter 
Conference on Applications of Computer Vision (WACV) (pp. 2548-2557). IEEE.
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Bias identification

Misclassified training-set samples on Waterbirds dataset

The impact of GCE loss function 

Training Feature space: CE (left) , GCE (right)

• The more precise bias-identification, the more effective model debiasing 
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Bias identification
Anomaly detection 

OCSVM

Modified One-Class Support Vector Machine

• Ni = |Samples of class i|

• Ci  = |Correctly classified samples of class i|
• r = 0.5

τ= percentile (scoresi , pi )
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Model debiasing

Data Augmentation

Geometric and color-space transformations

―Randomverticalflip

―RandomRotation

―RandomAutoContrast

―CenterCrop
Upsampling of identified bias-conflicting 
samples

Upsampling
Training-set Mini-batches

• Upsampling bias-conflicting samples (with DA);

• Weighted random sampler 

• A biased model is debiased using this approach. 
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Is a precise bias identification really important?

• JTT bias predictions + MoDAD 
step 2 -> - 1.63 % Conflicting 
accuracy; 

• MoDAD bias predictions + JTT 
debiasing -> + 1 % Conflicting 
accuracy w.r.t. JTT; 
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How does the model change in making predictions?
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General overview 

DiffusingDeBias (DDB): solving memorization by construction 

Fare clic per inserire note

Ciranni, M., Pastore, V. P., Di Via, R., Tartaglione, E., Odone, F., & Murino, V. (2025). Diffusing DeBias: Synthetic Bias Amplification for Model Debiasing. arXiv preprint arXiv:2502.09564.
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• Diffusion model can amplify bias present in training data; 

• Such property allows to obtain the generation of a purer 

bias-aligned distribution;

• This syntethic data can be used for training an auxiliary 

model;

• Ideally, this can be plugged into any debiasing method;

• Memorization solved by construction;

• Validation set is not employed for training the auxiliary 

model. 

Basic concepts 

DiffusingDeBias (DDB) 

Fare clic per inserire note
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Impact on performance

Fare clic per inserire note
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 Methods that inspect trained models to provide information on potential biases;

 Typically, the primary aim is not to debias but to expose bias 

Bias discovery frameworks

Classifier-To-Bias (C2B) 

Bias-To-Text (B2T)

Guimard, Q., D'Incà, M., Mancini, M., & Ricci, E. (2025). Classifier-to-Bias: Toward 
Unsupervised Automatic Bias Detection for Visual Classifiers. In Proceedings of the 

Computer Vision and Pattern Recognition Conference (pp. 15151-15161).

Kim, Y., Mo, S., Kim, M., Lee, K., Lee, J., & Shin, J. (2024). Discovering and 
mitigating visual biases through keyword explanation. In Proceedings of the 
IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 11082-
11092).
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 Methods that inspect trained models to provide information on potential biases;

 Typically, the primary aim is not to debias but to expose bias 

Bias discovery frameworks

Ciranni, M., Molinaro, L., Barbano, C. A., Fiandrotti, A., Murino, V., Pastore, V. P., & Tartaglione, E. (2024). Say My Name: a Model's Bias Discovery Framework. arXiv 
preprint arXiv:2408.09570.

Say My Name (SaMyNa)
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Bias discovery frameworks
Examples of SaMyNa generated bias keywords on waterbirds

Ciranni, M., Molinaro, L., Barbano, C. A., Fiandrotti, A., Murino, V., Pastore, V. P., & Tartaglione, E. (2024). Say My Name: a Model's Bias Discovery Framework. arXiv 
preprint arXiv:2408.09570.
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Dealing with multiple biases

• In case of multiple biases, many debiasing methods end-up mitigating one attribute while 

amplifying the dependency on the other one 

 Urban cars: target classes are country cars and urban cars; 
 bias are backgrounds and co-occuring objects

Li, Z., Evtimov, I., Gordo, A., Hazirbas, C., Hassner, T., Ferrer, C. C., ... & 
Ibrahim, M. (2023). A whac-a-mole dilemma: Shortcuts come in multiples where 
mitigating one amplifies others. In Proceedings of the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition (pp. 20071-20082).
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• Bias is a significant problem harnessing AI’s application to real-world 

problems;

• Bias is inherent in the data as in humans who generate it;

• Shortcuts corresponding to bias learned by a model;

• Methods for model debiasing can be divided into supervised and 

unsupervised;

• Unsupervised methods can be further categorized as two-step or end-to-end; 

• Open challenges include precise bias identification, validation sets, but also 

unrealistic datasets. 

• Bias in specific domain may be hard to discover, and to mitigate.

Conclusions and takeaways
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Contact
vito.paolo.pastore@unige.it

More information on my research on: 

vitopaolopastore.github.io 
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