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Bias in image classification
Spurious correlations between class labels and samples;
Shortcuts learned by models to minimize empirical risk;
Present in most training samples (bias-aligned);
Absent in a small percentage (bias-conflicting);

A model learns these spurious correlations (instead of semantic attributes).
Bias-Aligned

ENEEGAREER
EREENEERER

[=] Bl 3 1 1 S 2 B Y )

Bias-conflicting/unbiased
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What does it mean to debias a model?

— A

Bias attribute Q Target class
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What does it mean to debias a model?

— A

Bias attribute Q Target class
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What does it mean to debias a model?
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Bias attribute Q Target class
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Synthetic dataset

Corrupted Cifar-10
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Colored MNIST

Bias-aligned/biased
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Bias-conflicting/unbigsgdney through model debiasing: from methods to applications

¢ 60.000 images
¢ 32x32 pixels

¢ Texture biases (Brightness,
Contrast, Gaussian Noise,
Frost, Elastic Transform,
Gaussian Blur, Defocus Blur,
Impulse Noise, Saturate)

¢ Training set with different rho

¢ Test set: 90% Bias-Conflicting
and 10% aligned

¢ 60.000 images

* 28x28 pixels

* Digit correlates with its color
® Training set with different rho

* Test set: 90% Bias-Conflicting
and 10% aligned



BAR (Biased Action Recognition) Re al_wo rld data s ets (1 )
BAR BFFHQ WATERBIRDS

*
*

21.200 images ¢ 11.968 images

224x224 pixels ¢ 224x224 pixels
¢ CUB + Places

Training set: 95% bias| * Bias: Background
No bias annotation aligned * Training set: 95% bias
aligned

2.595 images
224x224 pixels

Bias: Setting in which an
action is perfomed

*
*

*
*

Bias: Gender

*

*

*

Test set : Balanced
¢ Test set : Balanced

BFFHQ from Flickr-Faces-HQ

Waterbirds
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Real-world datasets

CelebA

¢ 202,599 images
® 224x224 pixels
¢ 40 annotated attributes;

#® Several biases (e.g.,
color hair, gender,
make-up)

CelebA
(Blond / Not Blond)

A journey through model debiasing: from methods to applications
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Bias mitigation approaches

Intuitively, methods for mitigating the model’s prediction dependency on bias;

Increase the generalization and robustness of a trained model.

Landbird from waterbirds

A journey through model debiasing: from methods to applications
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Bias mitigation approaches

Intuitively, methods for mitigating the model’s prediction dependency on bias;

Increase the generalization and robustness of a trained model.

Biased model
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Intuitively, methods for mitigating the model’s prediction dependency on bias;

Bias mitigation approaches

Increase the generalization and robustness of a trained model.

Biased model

A journey through model debiasing: from methods to applications

Debiased model
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Model debiasing in Image Classification

* Supervised does not refer to target labels

e Supervised indicates approaches relying on bias information for mitigation;

* Unsupervised debiasing do not assume any prior information on bias

Supervised (Bias label required)

ERM

o Accuracy

DRO

ERM

DRO

Standard Regularization Standard Regularization Strong {5 Pena\t¥ Strong £, Penalty
Training Time ) Training Time Training Time Training Time
—— Dark hair, female = —— Dark hair, male = —— Blond, female = —— Blond, male

Sagawa, Shiori, et al. "Distributionally robust neural networks for group shifts: On the

importance of regularization for worst-case generalization." arXiv preprint arXiv:1911.08731

(2019).
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Unsupervised (No bias information)

—— [
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Nam, Junhyun, et al. “Learning from failure: De-biasing classifier from biased classifier.”

Advances in Neural Information Processing Systems 33 (2020): 20673-20684.

A journey through model debiasing: from methods to applications
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Supervised approaches

Basic intuition

* If bias labels are known, it is possible to reweight or augment the training samples;
* The model can be forced to focus more on bias-conflicting samples;

* Debiasing can happen at the level of features or predictions

Fare clic per inserire note
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Supervised approaches
Group optimization: GroupDRO

=
o

© Accuracy ¢

Training Time Training Time Training Time

Training Time
—— Landbird, land ——— Landbird, water —— Woaterbird, land

—— Waterbird, water

Obro = arg miﬂ{"é(é’) = max B . p [£(6; (ﬂ%y))]} Naive alternative

0cO geg
g m g e (5 + S} et R
adi -— argimin max s i EE
. t;ge@ gceg ()~ Py Y Vg

wy = 1/E_, pll(g" = g)]

Sagawa, Shiori, et al. "Distributionally robust neural networks for group shifts: On the importance of regularization for worst-case generalization." arXiv
preprint arXiv:1911.08731 (2019).
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Supervised approaches
End: Features disentanglement

B:{>:{>

R
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Output
layer

Entangle samples sharing the

P 7
Minibatch ) Nornfalization
- - a 4
- L7 layer
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I I.' / .
[/ e Disentangle samples
\ .7 sharing the same bias

same target but with different
bias

. »y

.

$

Tartaglione, E., et al., (2021). End: Entangling and disentangling deep representations for bias correction. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 13508-13517).
\L‘?éﬁi
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Supervised approaches
Recap
* Supervised approaches rely on bias information for model debiasing;
* They include dataset cleaning, post-processing or in-model approaches.

* They are usually more accurate than unsupervised counterpart;

Fare clic per inserire note
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Towards unsupervised debiasing

* How can we reweight samples for bias mitigation, if bias is unknown?

Dataset with unknown bias labels Biased model /

~

First step

» Bias identification

¥

Biased feature space

Model debiasing

‘ Second step

UnBiased feature space

Lcéﬁ A journey through model debiasing: from methods to applications
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Bias identification

Bias identification allows to produce pseudolabels that can be used for debiasing;
Methods exploit the feature space (e.g., MoDAD, George) or predictions (e.g., JTT);

The more precise bias identification, the better the debiasing performance.

Model debiasing

* Bias-conflicting augmentation and upsampling (e.g., MoDAD, Just Train Twice);

* Loss re-weighting (e.g., Learning with a Biased Committee);

* Adversarial debiasing (e.g., BiasAdv).

ICIAP

eEEhiEs

A journey through model debiasing: from methods to applications
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Two-steps unsupervised approaches

Just train twice

* A biased model has a higher probability to misclassify a bias-conflicting sample.
* Two-step method: bias identification + debiasing
. The error set is identified as: £ = {(i:yi) st fualzi) # yi}-

ERM up sampling the samples in the error set (predicted bias-conflicting)

Jup-erM (0, E) = (Aup Yo lzy0)+ Y A, y;ﬂ))

(z,y)€E (x,y)¢E
Waterbirds worst-group test acc. CelebA worst-group test acc.
Tuned for average Tuned for worst-group  Tuned for average Tuned for worst-group
CVaR DRO (Levy et al., 2020) 62.0% 75.9% 36.1% 64.4%
LfF (Nam et al., 2020) 44.1% 78.0% 24.4% 11.2%
JTT (Ours) 62.5% 86.7% 40.6% 81.1%

Fare cli

Liu, Evan Z., et al. "Just train twice: Improving group robustness without training group information." International Conference on Machine Learning. PMLR, 2021.

ICIAP
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Two-steps unsupervised approaches

Learning with Bias Committee

* Bias-Aligned samples are correctly classified by a committee

* Backbone pre-trained with BYOL
 Random sample of m subsets

* Weight based on consensus

1
2 L(fi(z) =y)/m + o

w(x) =

*  Weighted ERM

Lwce = Z w(z) - CE(g9(x),y),

(z,y)eB

ICIAP
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Committee | Sample weighting

—>LwcCE

Knowledge distillation

Kim, Nayeong, et al. "Learning debiased classifier with biased committee." Advances in Neural
Information Processing Systems 35 (2022): 18403-18415.

A journey through model debiasing: from methods to applications
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End-to-end methods

Model debiasing is performed without requiring bias identification

They usually still employ an auxiliary models to provide indirect information on bias

r—

Lk ®
: Debiasing
- fo

Relative
Difficulty

— —
=
.......... Lk Amplifying Bias
Lack .
e —

Nam, Junhyun, et al. “Learning from failure: De-biasing classifier from biased classifier.”
Advances in Neural Information Processing Systems 33 (2020): 20673-20684.

L

L J

A journey through model debiasing: from methods to applications

26



Learning from Failure

* Bias affects the model onlv if it is i ) ( 3
easier to learn than the target i
; . CE >
attribute; s . ® Debiasing
: 7 v s
*  GCE loss function to amplify easy A 2 Relative g 2
samples (bias-aligned); \ Difficulty
- r B é
* Model D (Debiased) is trained with : : . _
Weighted CE according to: eans g besennnsn LCE Amplifying Bias
ré LccE -
CE(fp(2),y) + CE(fp(2),y) GCE(n(x-0). o) — L= Pu(®:0)?  9GCE(p,y) _ ,ICE(p,y)
(p(ma )ay) = q BY = Dy o0

Fare clic per inserire note

Nam, Junhyun, et al. “Learning from failure: De-biasing classifier from biased classifier.” Advances in Neural Information
Processing Systems 33 (2020): 20673-20684.
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Open challenges in model debiasing

¢ How to obtain a precise bias identification;

¢ How to avoid using bias annotated (or not) validation sets;

# Misclassified Samples across
Epochs using CE

¢ How to avoid bias-conflicting memorization: —— Bias-Aligned
R0081 Bias-Conflicting
800
o
Q.
£ 600
¢ How to discover bias in models; .
200 - L
01— == - - - :
¢ Real-world datasets for benchmarking. © T Phes Y%

A journey through model debiasing: from methods to applications
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Looking at model debiasing through the lens of
anomaly detection (MoDAD)

Principal Component Analysis

L]
o Bias-aligned Samples :‘qm il
. . . L
e Bias-conflicting Samples il o One-Class Support Vector Machine
* Bias-aligned Centroid -
* Bias-conflicting Centroid ®
® o
o
0% ®
(] .. 0© ©
L [ Secgee e
oo o
@) Cc @
) o ()
@)
Anomaly Detection

Pastore, V. P., Ciranni, M., Marinelli, D., Odone, F., & Murino, V. (2025, February). Looking at Model Debiasing through the Lens of Anomaly Detection. In 2025 IEEE/CVF Winter
Conference on Applications of Computer Vision (WACV) (pp. 2548-2557). IEEE.

A journey through model debiasing: from methods to applications
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Method overview

model trained with Generalized OneClass-SVM \
Cross-Entropy Loss
- A v o .o
‘ f Anomaly | L,
) 8 L Detection e Sl
== J H ( J " ® ®
embedding Step 1: BIAS
\_ s IDENTIFICATION J
\
Bias-conflicting/aligned J
samples predictions N
~ — ™
Step 2: MODEL \ )
DEBIASING Bias-Conflicting
Upsampling & Augmentation
ERM Biased Model Debiased Model

—— f l Bl
d Fine-tuning ) i /
_ N ol f >

Pastore, V. P., Ciranni, M., Marinelli, D., Odone, F., & Murino, V. (2025, February). Looking at Model Debiasing through the Lens of Anomaly Detection. In 2025 IEEE/CVF Winter

Conference on Applications of Computer Vision (WACV) (pp. 2548-2557). IEEE.
Lcéﬁ A journey through model debiasing: from methods to applications




Model trained with Generalized OneClass-SVM
Cross-Entropy Loss
L]

Bias identification — —
" Anomaly o« (oSe%a ),

o ®
_______ > ::...

Detection e Sl
The impact of GCE loss function embeddings Step 1 BIAS IDENTIFICATION

Bias-conflicting/aligned ]

samples predictions

* The more precise bias-identification, the more effective model debiasing

# Misclassified Samples across # Misclassified Samples across O O
Epochs using CE Epochs using GCE O
= Bias-Aligned = Bias-Aligned
1000 Bias-Conflicting 2000 Bias-Conflicting . .
0 oo 3 1500 ‘~C> o
E‘ 600 E‘ ‘ ‘ ' .
& @ 1000 ® “ ()
# 400 # ® ) ' ~ () ‘
"I ‘""".'
0 (1] 10 20 30 40 50 (1] 20 40 60 80 100
Epochs Epochs
Misclassified training-set samples on Waterbirds dataset Training Feature space: CE (left) , GCE (right)
Lcéﬁ A journey through model debiasing: from methods to applications 31




Bias identification

Anomaly detection

Modified One-Class Support Vector Machine

FO) = sign() & K(x,x) — A+ 7)
i=1

« N, =|Samples of class |

« C, =|Correctly classified samples of class i
* r=05

i — G
pi=TL_r~100

T=percentile (scores;, p;)

A journey through model debiasing: from methods to applications

Model trained with Generalized

Cross-Entropy Loss OneClass-SVM

Anomaly _______ »' \//:.::..:...\\ Y
Detection bR

embeddings
Step 1: BIAS IDENTIFICATION

Bias-conflicting/aligned [ ]
samples predictions

Decision Threshold
1

Decision_function Scores Distribution

32



Model debiasing

* A biased model is debiased using this approach.

ICIAP
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Upsampling bias-conflicting samples (with DA);

Weighted random sampler

Upsampling
Training-set Mini-batches
2%
.‘ @ ®o
o O ' o
Upsampling of identified bias-conflicting ‘

samples

A journey through model debiasing: from methods to applications

Bias-conflicting/aligned [

samples predictions

/Step 2: MODEL DEBIASING

ERM Biased Model

\

Bias-Conflicting
Upsampling & Augmentation

]

I

_ [fes

Fine-tuning

N

Debiased Model

oo |

Data Augmentation

Geometric and color-space transformations

—Randomverticalflip
—RandomRotation

—RandomAutoContrast

—CenterCrop

33



Is a precise bias identification really important?

JTT bias predictions + MoDAD
step 2 -> - 1.63 % Conflicting
accuracy;

MoDAD bias predictions + JTT
debiasing -> + 1 % Conflicting
accuracy w.r.t. JTT;

ICIAP

eEEhiEs

Model trained with Generalized
Cross-Entropy Loss

embeddings

OneClass-SVM

Step 1: BIAS IDENTIFICATION

Bias-conflicting/aligned

samples predictions

JTT hias predictions

KStep 2: MODEL DEBIASING

ERM Biased Model

~

A 4

|

Bias-Conflicting

Upsampling & Augmentation

]

Y

J

N

-

it

Fine-tuning

Debiased Model

\

)
)

/

-
—_
-
>
—_—
—

/

A journey through model debiasing: from methods to applications
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How does the model change in making predictions?

ERM+CE

L“E\E A journey through model debiasing: from methods to applications




DiffusingDeBias (DDB): solving memorization by construction

General overview

B) Bias Amplifier + Model Debiasing

/ A) Diffusing the Bias

(A ] s ) Signal
‘BI&S Amplifier 3% Bias Amplifier L - Debiased
Model

Ciranni, M., Pastore, V. P., Di Via, R., Tartaglione, E., Odone, F., & Murino, V. (2025). Diffusing DeBias: Synthetic Bias Amplification for Model Debiasing. arXiv preprint arXiv:2502.09564.

Fare clic per inserire note
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DiffusingDeBias (DDB)

Basic concepts

* Diffusion model can amplify bias present in training data;

* Such property allows to obtain the generation of a purer
bias-aligned distribution;

* This syntethic data can be used for training an auxiliary
model;

* l|deally, this can be plugged into any debiasing method;
* Memorization solved by construction;

* Validation set is not employed for training the auxiliary
model.

Fare clic per inserire note
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Impact on performance

Method Unsup Waterbirds BAR BFFHQ ImageNet-A
WGA Avg. Avg. Confl. Avg.
ERM 62.60+030 51.85+592 - 60.13+ 046 30.30
LISA [48] 89.20 — - - -
G-DRO [42] 91.40+1.10 — — — -
George [43] 76.20+ 2.00 — - — -
JTT 134 83.80+120 68.53+320 — 62.20+ 134 =
CNC [51] 88.950+ 030 — —_ — —
LfF 381 7800  62.98+27 = 62.97+ 322 -
E 1 F-Debias [46] = — = (3.0U+ 122 -
Park et al. [39] - — 71.68 — —
LWBC [22) - 62.03+ 276 — - 35.97+0.49
CDvG+LA1F [18] 84.80 — — 62.20+045 34.60
DebiAN [32] - 69.88+ 292 — 62.80+ 0.60 -
MoDAD [40] 89.43+ 160 69.83+072 —~ 68.33+ 289 —
DDB-II (ours) 91.56+015 72.81+102 83.15+17 70.93+014 37.53+0s2
DUB-1 (0ours) YU.5L+068 (U.4U+141 S1.2(+088 (4.0(+237 39.80+050
DDB-I (w/ err. set) 90.34+ 041 70.59+019 82.441064 71.40+092 38.121096

Fare clic per inserire note
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Bias discovery fra

.
¢ Typically, the primary aim is not to debias but to expose bias

Classifier-To-Bias (C2B)

Task information Bias attributes and classes

Image classification

Bias attributes  Bias classes

Classes rectangular
. Shape cylindrical

sv\:'nlr::un Bias { spherical

minibus I |

birdhouse p Oposa

projector

in a garden
Context near a door
near a window

Image | ( |

: retrleval
Bias scores

I—) Classifier | = []

Guimard, Q., D'Inca, M., Mancini, M., & Ricci, E. (2025). Classifier-to-Bias: Toward
Unsupervised Automatic Bias Detection for Visual Classifiers. In Proceedings of the

Computer Vision and Pattern Recognition Conference (pp. 15151-15161).

<

Bias class scores

Bias classes

rectangular
cylindrical
spherical

meworks

Methods that inspect trained models to provide information on potential biases;

Bias-To-Text (B2T)

Step 1. Bias keywords generation Step 2. Various applications of keywords

Mispredicted images

_ (a) Debiased training
(apliening B2T keywords /
— & CLIP _
Keyword e ““Tan"” == (b) CLIP prompting
Extraction player

Cele blond class ~a (c) Model comparison

Kim, Y., Mo, S., Kim, M., Lee, K., Lee, J., & Shin, J. (2024). Discovering and
mitigating visual biases through keyword explanation. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 11082-
11092).

ICIAP

eEEhiEs
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Bias discovery frameworks

¢ Methods that inspect trained models to provide information on potential biases;

*

Typically, the primary aim is not to debias but to expose bias

Say My Name (SaMyNa)

Samples subset selection Samples captioning l:emcu:l:

egetation
h

Class 1
Bird
Ocean
Beach
Wawes

Model under
analysis

P L L LT

-------

|

N
1.
z

Similarity score . ’ . '

__________________________

Ciranni, M., Moalinaro, L., Barbano, C. A., Fiandrotti, A., Murino, V., Pastore, V. P., & Tartaglione, E. (2024). Say My Name: a Model's Bias Discovery Framework. arXiv
preprint arXiv:2408.09570.

Lcéﬁ A journey through model debiasing: from methods to applications




Bias discovery frameworks
Examples of SaMyNa generated bias keywords on waterbirds

Landbirds Waterbirds
treej \ sea \
forest | ocean; |
trees| | beach |
forested | waters:
foliage | shoreline |

branch shore; |
stalks] coastal |

vegetation | water
leaves| boat

0.2 0.4 0.2 0.4

s(k,c) s(k,c)

Ciranni, M., Molinaro, L., Barbano, C. A., Fiandrotti, A., Murino, V., Pastore, V. P., & Tartaglione, E. (2024). Say My Name: a Model's Bias Discovery Framework. arXiv
preprint arXiv:2408.09570.

ICIAP A journey through model debiasing: from methods to applications
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Dealing with multiple biases

* |In case of multiple biases, many debiasing methods end-up mitigating one attribute while

amplifying the dependency on the other one

\ shortcut reliance

LD. Acc | BG Gap 1 CoObj Gap 1 BG+CoObj Gap 1

ERM 976  -153 112 -69.2
Mixup 98.3 -12.6 93 -61.8
CutMix 966  -45.0(x2.948) -48 -86.5
Cutout 978  -158(x1.036) -104 ;i
AugMix 982  -103 -12.1(x1.088) -702
SD 973 -15.0 36 -36.1
CF+F Aug 968  -160(x1.048) +0.4 -19.4
L{F 972 -116 184 (x1.648) -632
JTT (E=1) 959 8.1 133 (x1.188) 401
EIIL (E=1) 955  -4.2 247 (x2218) 449
JTT (E=2) 946 -233(x1528) -53 521
EIL (E=2) 955 -21.5(x1408) -68 496
DebiAN 980  -149 -10.5 -69.0
LLE (ours) 967  -2.1 E 5.9

¢ Urban cars: target classes are country cars and urban cars;
¢ bias are backgrounds and co-occuring objects

Li, Z., Evtimoy, |., Gordo, A., Hazirbas, C., Hassner, T., Ferrer, C. C., ... &
Ibrahim, M. (2023). A whac-a-mole dilemma: Shortcuts come in multiples where
mitigating one amplifies others. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (pp. 20071-20082).

lacég A journey through model debiasing: from methods to applications 43
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Conclusions and takeaways

ICIAP
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Bias is a significant problem harnessing Al’'s application to real-world
problems;

Bias is inherent in the data as in humans who generate it;
Shortcuts corresponding to bias learned by a model;

Methods for model debiasing can be divided into supervised and
unsupervised;

Unsupervised methods can be further categorized as two-step or end-to-end;

Open challenges include precise bias identification, validation sets, but also
unrealistic datasets.

Bias in specific domain may be hard to discover, and to mitigate. = - {'ﬂ .. . ﬂ

X1 1€ DAl e
HeBANEEET L

A journey through model debiasing: from methods to applications
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Contact

vito.paolo.pastore@unige.it

More information on my research on:

vitopaolopastore.github.io

A journey through model debiasing: from methods to applications
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