

A journey through Bias mitigation approaches

A journey through model debiasing: from methods to applications
Tutorial for ICIAP 2025

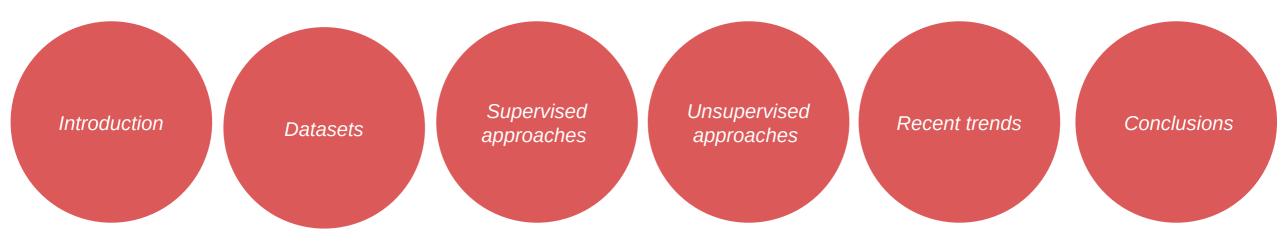
https://a-journey-through-model-debiasing.github.io/ 15/09/2025

Vito Paolo Pastore

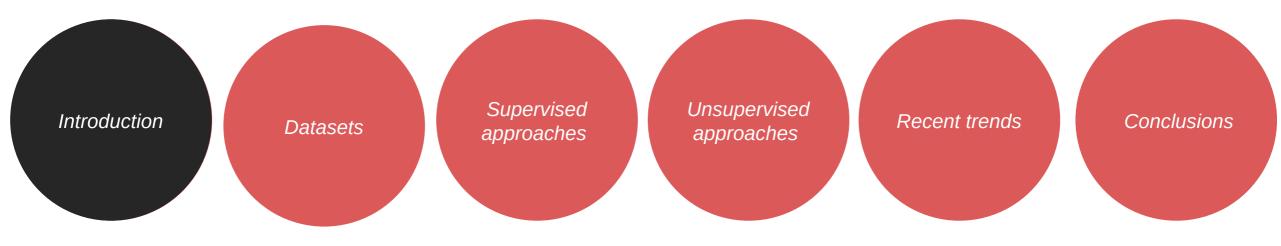
Assistant Professor, MaLGa-DIBRIS, Università degli studi di Genova

vito.paolo.pastore@unige.it

Outline

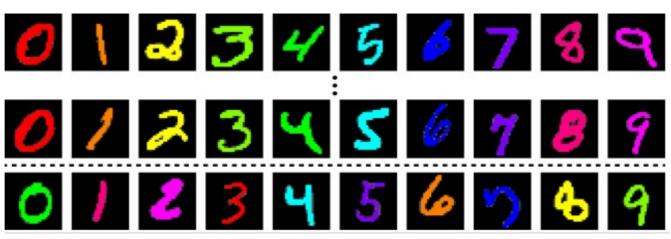


Outline

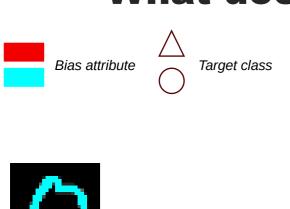


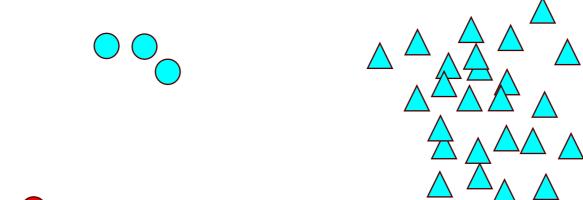
Bias in image classification

- Spurious correlations between class labels and samples;
- Shortcuts learned by models to minimize empirical risk;
- Present in most training samples (bias-aligned);
- Absent in a small percentage (bias-conflicting);
- A model learns these spurious correlations (instead of semantic attributes).

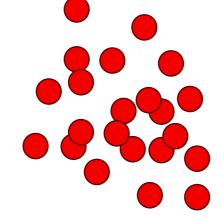


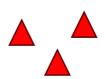
What does it mean to debias a model?



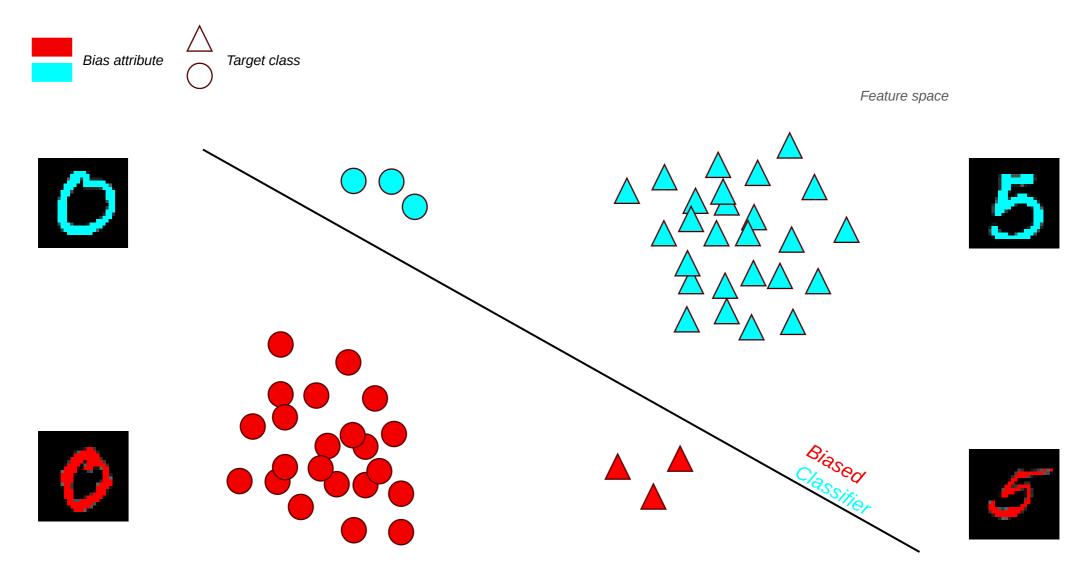


Feature space

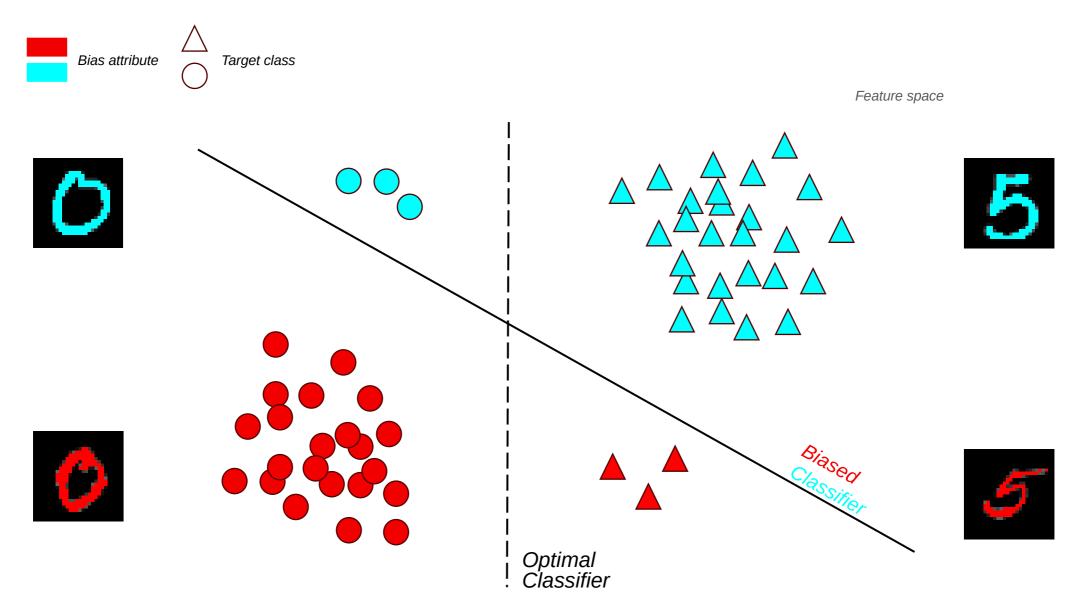




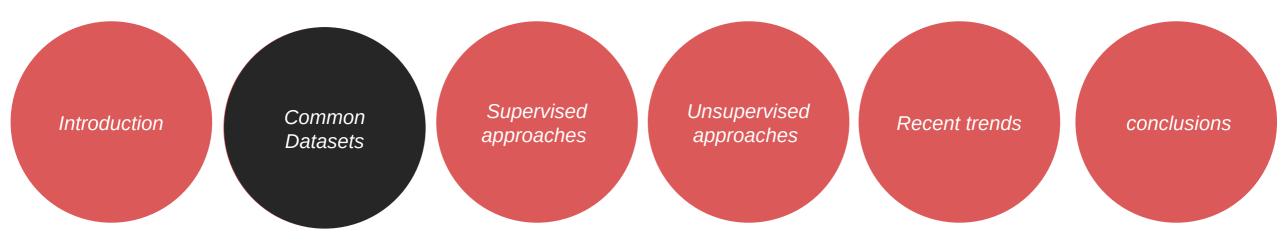
What does it mean to debias a model?



What does it mean to debias a model?

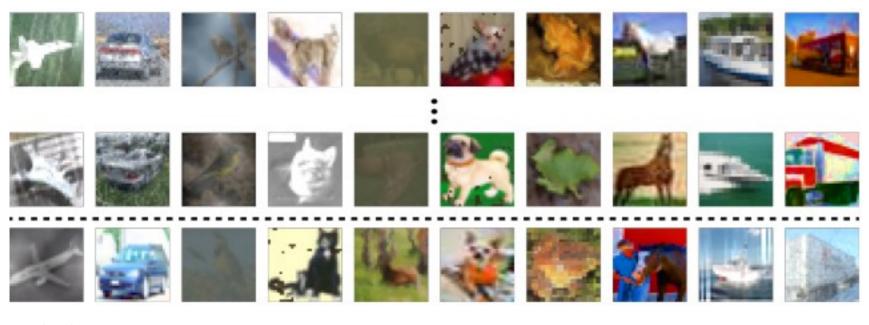


Outline



Synthetic dataset

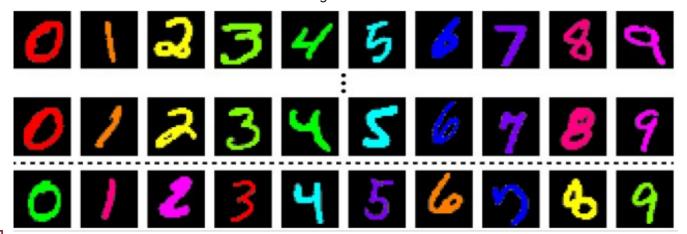
Corrupted Cifar-10



- ◆ 60.000 images
- ◆ 32x32 pixels
- ◆ Texture biases (Brightness, Contrast, Gaussian Noise, Frost, Elastic Transform, Gaussian Blur, Defocus Blur, Impulse Noise, Saturate)
- Training set with different rho
- ◆ Test set: 90% Bias-Conflicting and 10% aligned

Colored MNIST

Bias-aligned/biased



- ◆ 60.000 images
- ◆ 28x28 pixels
- Digit correlates with its color
- Training set with different rho
- ◆ Test set: 90% Bias-Conflicting and 10% aligned

Real-world datasets (1)

BAR

- 2.595 images
- 224x224 pixels
- Bias: Setting in which an action is performed
- No bias annotation

BFFHQ

- 21.200 images
- 224x224 pixels
- Bias: Gender
- Training set: 95% bias aligned
- Test set : Balanced

WATERBIRDS

- ◆ 11.968 images
- ◆ 224x224 pixels
- ◆ CUB + Places
- ◆ Bias: Background
- ◆ Training set: 95% bias aligned
- ◆ Test set : Balanced

BFFHQ from Flickr-Faces-HQ

Waterbirds

Real-world datasets

CelebA

- ◆ 202,599 images
- ◆ 224x224 pixels
- ◆40 annotated attributes;
- Several biases (e.g., color hair, gender, make-up)

CelebA (Blond / Not Blond)



Bias mitigation approaches

- Intuitively, methods for mitigating the model's prediction dependency on bias;
- Increase the generalization and robustness of a trained model.

Landbird from waterbirds

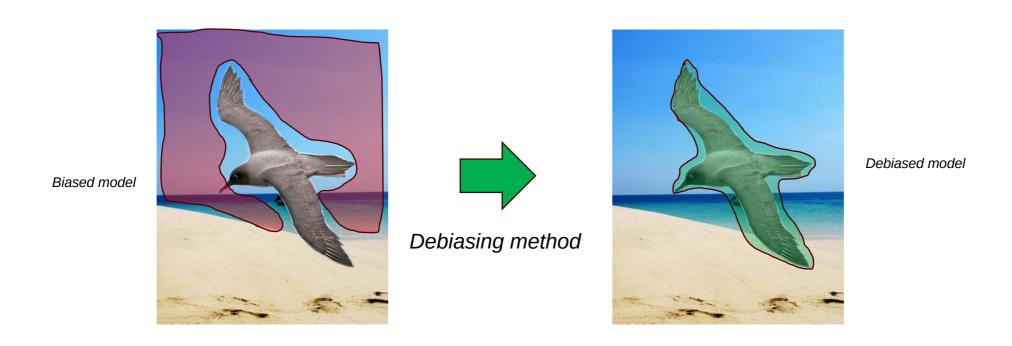
Bias mitigation approaches

- Intuitively, methods for mitigating the model's prediction dependency on bias;
- Increase the generalization and robustness of a trained model.

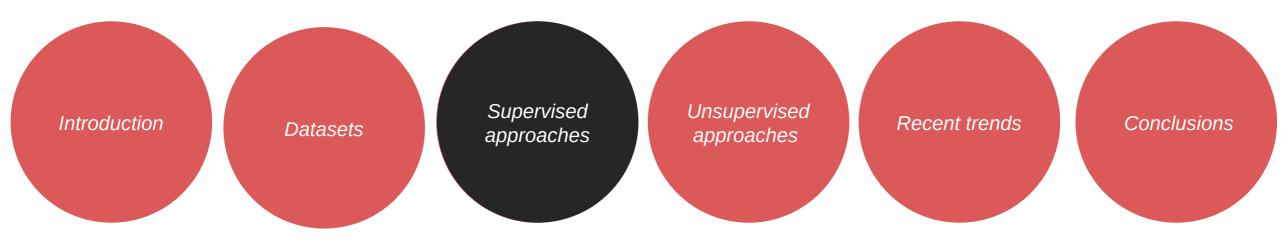
Biased model

Bias mitigation approaches

- Intuitively, methods for mitigating the model's prediction dependency on bias;
- Increase the generalization and robustness of a trained model.



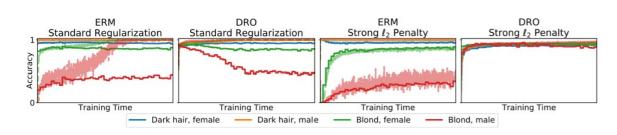
Outline



Model debiasing in Image Classification

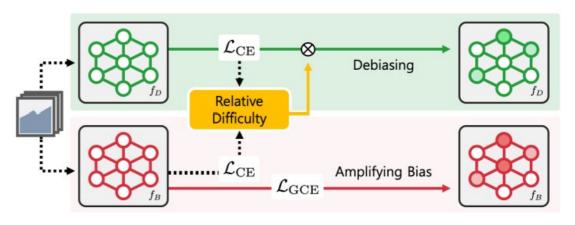
- Supervised does not refer to target labels
- Supervised indicates approaches relying on bias information for mitigation;
- Unsupervised debiasing do not assume any prior information on bias

Supervised (Bias label required)



Sagawa, Shiori, et al. "Distributionally robust neural networks for group shifts: On the importance of regularization for worst-case generalization." *arXiv preprint arXiv*:1911.08731 (2019).

Unsupervised (No bias information)

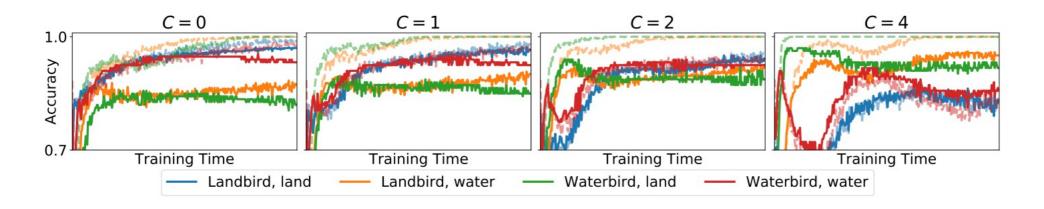


Nam, Junhyun, et al. "Learning from failure: De-biasing classifier from biased classifier." *Advances in Neural Information Processing Systems* 33 (2020): 20673-20684.

Basic intuition

- If bias labels are known, it is possible to reweight or augment the training samples;
- The model can be forced to focus more on bias-conflicting samples;
- Debiasing can happen at the level of features or predictions

Group optimization: GroupDRO



$$\hat{\theta}_{\mathrm{DRO}} := \underset{\theta \in \Theta}{\mathrm{arg\,min}} \Big\{ \hat{\mathcal{R}}(\theta) := \underset{g \in \mathcal{G}}{\mathrm{max}} \, \mathbb{E}_{(x,y) \sim \hat{P}_g} [\ell(\theta;(x,y))] \Big\}$$

$$\hat{\theta}_{\mathrm{adj}} := \underset{\theta \in \Theta}{\operatorname{arg\,min}} \ \underset{g \in \mathcal{G}}{\operatorname{max}} \ \left\{ \mathbb{E}_{(x,y) \sim \hat{P}_g}[\ell(\theta;(x,y))] + \frac{C}{\sqrt{n_g}} \right\}$$

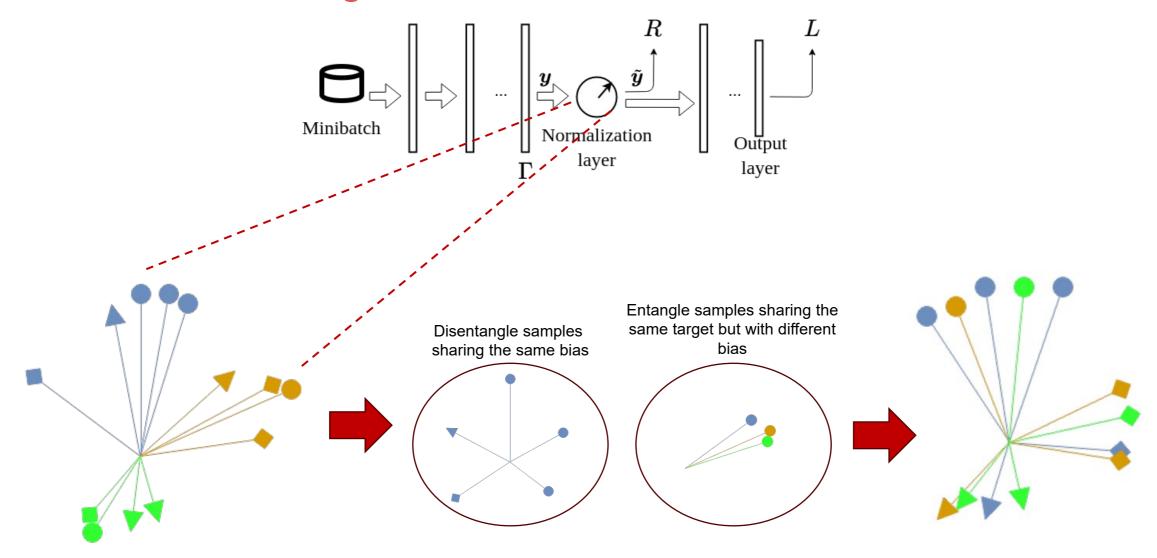
Naïve alternative

$$\hat{\theta}_w := \underset{\theta \in \Theta}{\operatorname{arg \, min}} \ \mathbb{E}_{(x,y,g) \sim \hat{P}}[w_g \, \ell(\theta;(x,y))]$$

$$w_g \ = \ 1/\mathbb{E}_{g' \sim \hat{P}}[\mathbb{I}(g' \ = \ g)]$$

Sagawa, Shiori, et al. "Distributionally robust neural networks for group shifts: On the importance of regularization for worst-case generalization." arXiv preprint arXiv:1911.08731 (2019).

End: Features disentanglement

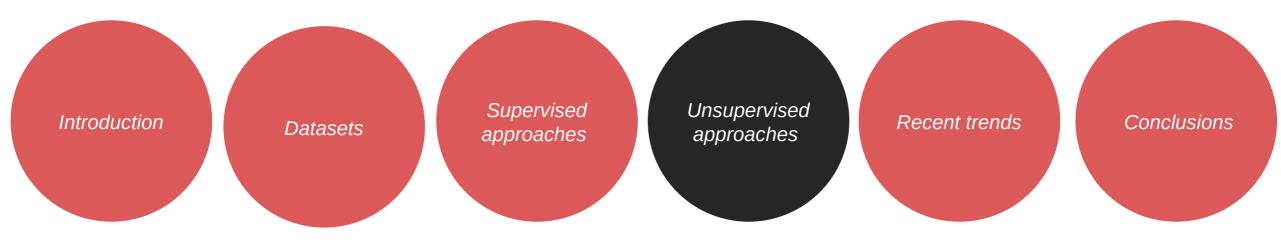


Tartaglione, E., et al., (2021). End: Entangling and disentangling deep representations for bias correction. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 13508-13517).

Recap

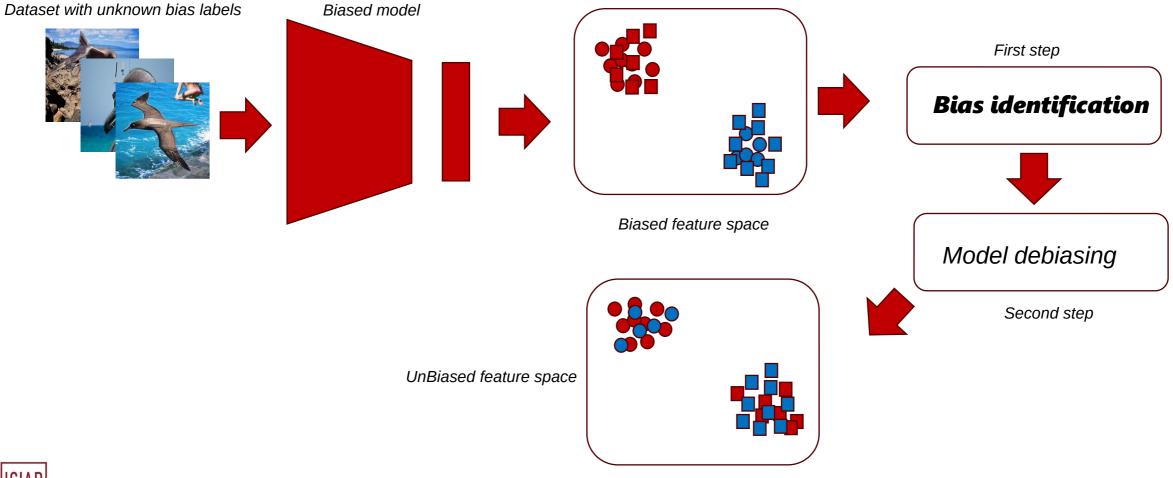
- Supervised approaches rely on bias information for model debiasing;
- They include dataset cleaning, post-processing or in-model approaches.
- They are <u>usually</u> more accurate than unsupervised counterpart;

Outline



Towards unsupervised debiasing

How can we reweight samples for bias mitigation, if bias is unknown?



Bias identification

- Bias identification allows to produce pseudolabels that can be used for debiasing;
- Methods exploit the feature space (e.g., MoDAD, George) or predictions (e.g., JTT);
- The more precise bias identification, the better the debiasing performance.

Model debiasing

- Bias-conflicting augmentation and upsampling (e.g., MoDAD, Just Train Twice);
- Loss re-weighting (e.g., Learning with a Biased Committee);
- Adversarial debiasing (e.g., BiasAdv).

Two-steps unsupervised approaches

Just train twice

- A biased model has a higher probability to misclassify a bias-conflicting sample.
- Two-step method: bias identification + debiasing
- The error set is identified as: $E = \{(x_i, y_i) \text{ s.t. } \hat{f}_{id}(x_i) \neq y_i\}.$
- ERM up sampling the samples in the error set (predicted bias-conflicting)

$$J_{\text{up-ERM}}(\theta, E) = \left(\lambda_{\text{up}} \sum_{(x,y) \in E} \ell(x, y; \theta) + \sum_{(x,y) \notin E} \ell(x, y; \theta)\right)$$

	Waterbirds we	orst-group test acc.	CelebA worst-group test acc.		
	Tuned for average	Tuned for worst-group	Tuned for average	Tuned for worst-group	
CVaR DRO (Levy et al., 2020)	62.0%	75.9%	36.1%	64.4%	
LfF (Nam et al., 2020)	44.1%	78.0%	24.4%	77.2%	
JTT (Ours)	62.5%	86.7%	40.6%	81.1%	

Liu, Evan Z., et al. "Just train twice: Improving group robustness without training group information." International Conference on Machine Learning. PMLR, 2021.

Two-steps unsupervised approaches

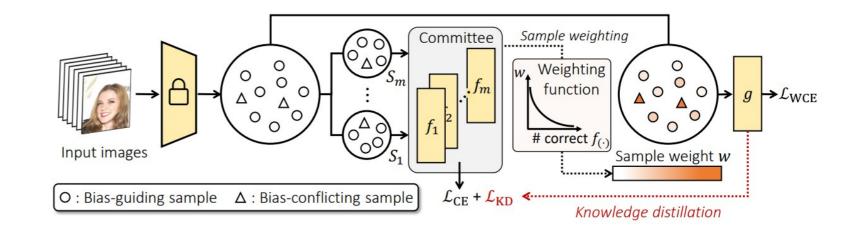
Learning with Bias Committee

- Bias-Aligned samples are correctly classified by a committee
- Backbone pre-trained with BYOL
- Random sample of m subsets
- Weight based on consensus

$$w(x) = \frac{1}{\sum_{l=1}^{m} \mathbb{1}(f_l(x) = y)/m + \alpha}$$

Weighted ERM

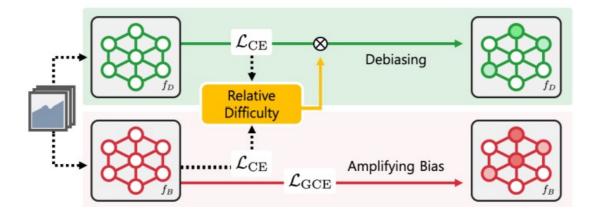
$$\mathcal{L}_{WCE} = \sum_{(x,y)\in\mathcal{B}} w(x) \cdot CE(g(x), y),$$



Kim, Nayeong, et al. "Learning debiased classifier with biased committee." *Advances in Neural Information Processing Systems* 35 (2022): 18403-18415.

End-to-end methods

- Model debiasing is performed without requiring bias identification
- They usually still employ an auxiliary models to provide indirect information on bias

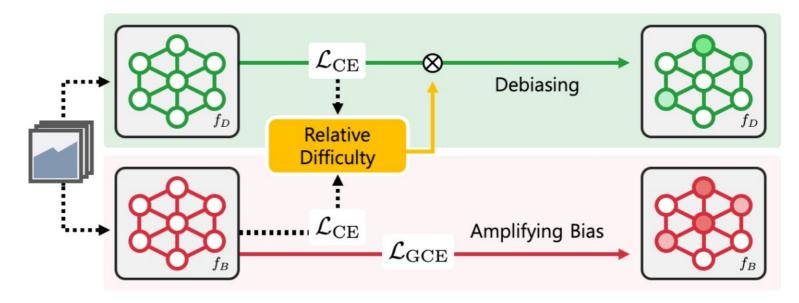


Nam, Junhyun, et al. "Learning from failure: De-biasing classifier from biased classifier." *Advances in Neural Information Processing Systems* 33 (2020): 20673-20684.

Learning from Failure

- Bias affects the model only if it is easier to learn than the target attribute;
- GCE loss function to amplify easy samples (bias-aligned);
- Model D (Debiased) is trained with Weighted CE according to:

$$W(x) = \frac{CE(f_B(x), y)}{CE(f_B(x), y) + CE(f_D(x), y)}$$



$$\mathrm{GCE}(p(x;\theta),y) = \frac{1 - p_y(x;\theta)^q}{q} \qquad \frac{\partial \mathrm{GCE}(p,y)}{\partial \theta} = p_y^q \frac{\partial \mathrm{CE}(p,y)}{\partial \theta}$$

Fare clic per inserire note

Nam, Junhyun, et al. "Learning from failure: De-biasing classifier from biased classifier." Advances in Neural Information Processing Systems 33 (2020): 20673-20684.

Open challenges in model debiasing

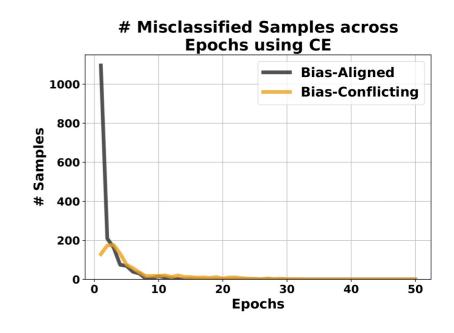
How to obtain a precise bias identification;

How to avoid using bias annotated (or not) validation sets;

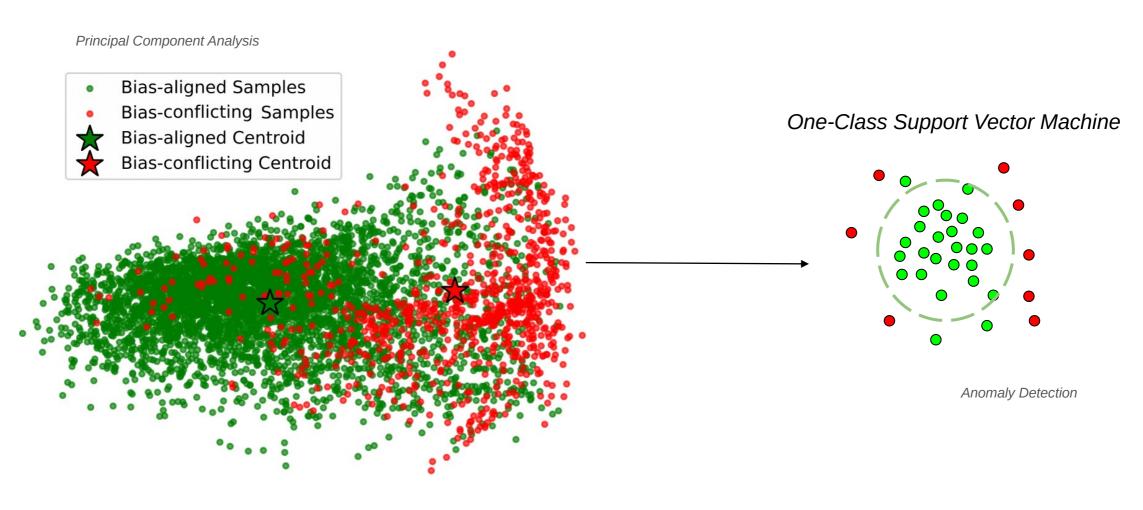
How to avoid bias-conflicting memorization;

How to discover bias in models;

Real-world datasets for benchmarking.

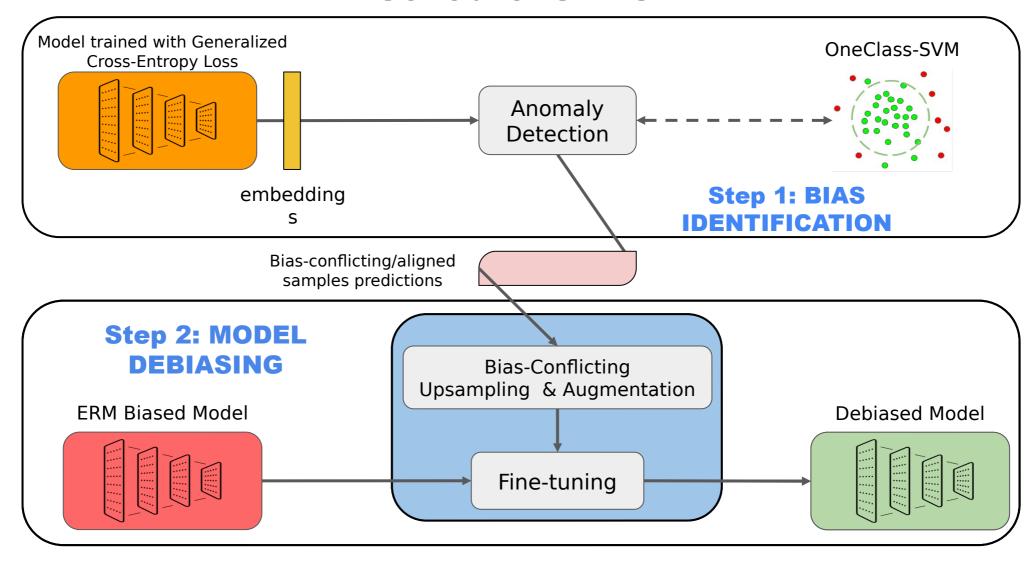


Looking at model debiasing through the lens of anomaly detection (MoDAD)



Pastore, V. P., Ciranni, M., Marinelli, D., Odone, F., & Murino, V. (2025, February). Looking at Model Debiasing through the Lens of Anomaly Detection. In 2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) (pp. 2548-2557). IEEE.

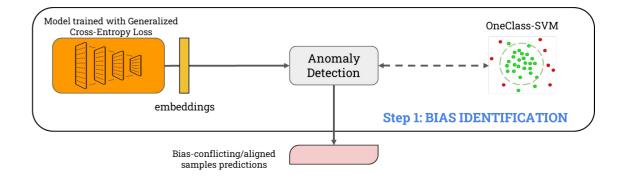
Method overview



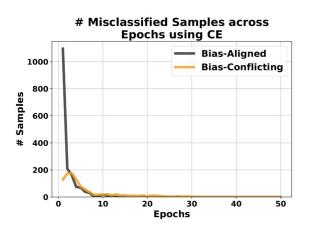
Pastore, V. P., Ciranni, M., Marinelli, D., Odone, F., & Murino, V. (2025, February). Looking at Model Debiasing through the Lens of Anomaly Detection. In 2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) (pp. 2548-2557). IEEE.

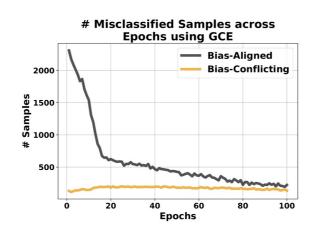
Bias identification

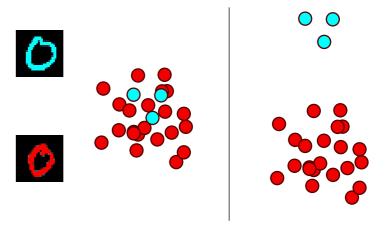
The impact of GCE loss function



• The more precise bias-identification, the more effective model debiasing







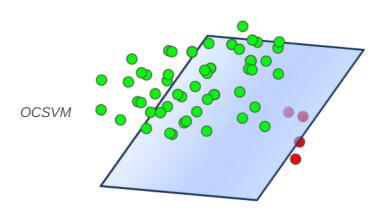
Misclassified training-set samples on Waterbirds dataset

Training Feature space: CE (left) , GCE (right)

Bias identification

Anomaly detection

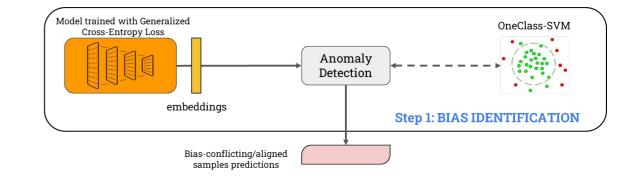
Modified One-Class Support Vector Machine



$$f(x) = sign(\sum_{i=1}^{m} \alpha_i K(x, x_i) - (\lambda + \tau)$$

- $N_i = |Samples of class i|$
- $C_i = |\text{Correctly classified samples of class } i|$
- r = 0.5

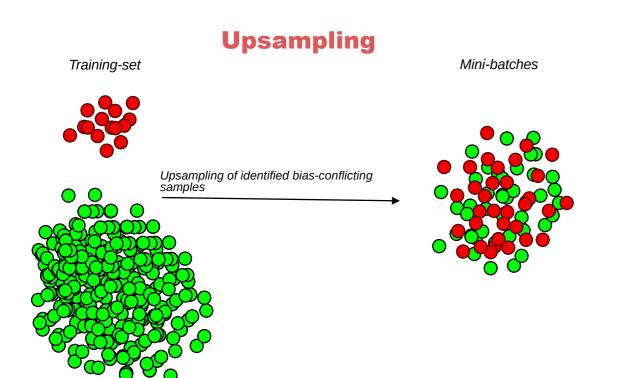
$$p_i = \frac{N_i - C_i}{N_i} r \cdot 100$$

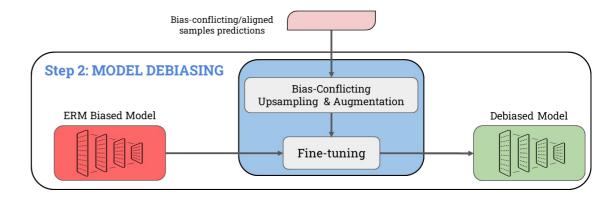




Model debiasing

- Upsampling bias-conflicting samples (with DA);
- Weighted random sampler
- A biased model is debiased using this approach.

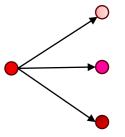




Data Augmentation

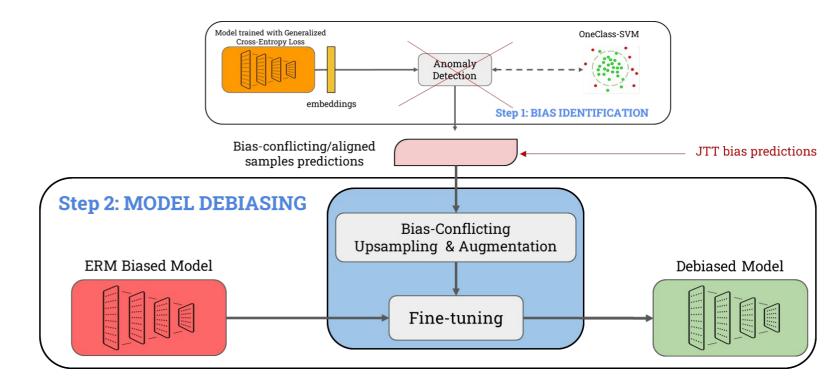
Geometric and color-space transformations

- —Randomverticalflip
- —RandomRotation
- —RandomAutoContrast
- —CenterCrop



Is a precise bias identification really important?

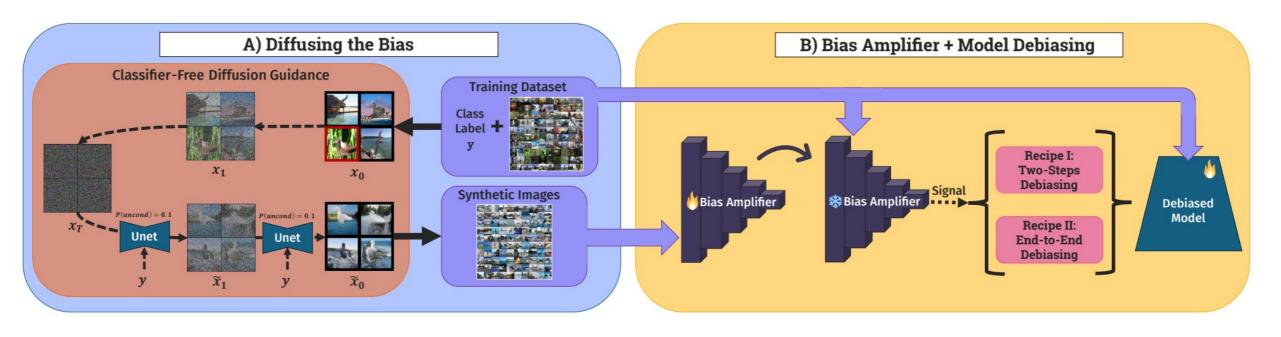
- JTT bias predictions + MoDAD step 2 -> - 1.63 % Conflicting accuracy;
- MoDAD bias predictions + JTT debiasing -> + 1 % Conflicting accuracy w.r.t. JTT;



How does the model change in making predictions?

Diffusing DeBias (DDB): solving memorization by construction

General overview

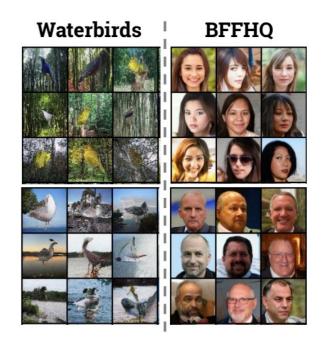


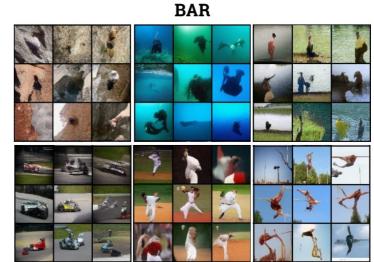
Ciranni, M., Pastore, V. P., Di Via, R., Tartaglione, E., Odone, F., & Murino, V. (2025). Diffusing DeBias: Synthetic Bias Amplification for Model Debiasing. arXiv preprint arXiv:2502.09564.

DiffusingDeBias (DDB)

Basic concepts

- Diffusion model can amplify bias present in training data;
- Such property allows to obtain the generation of a purer bias-aligned distribution;
- This syntethic data can be used for training an auxiliary model;
- Ideally, this can be plugged into any debiasing method;
- Memorization solved by construction;
- Validation set is not employed for training the auxiliary model.

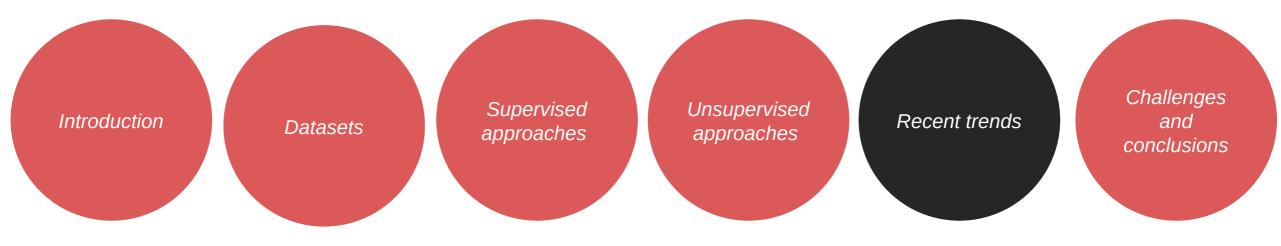




Impact on performance

Method	Unsup	Waterbirds	BAR	AR BFFHQ		ImageNet-A
11101104	Споцр	WGA	Avg.	Avg.	Confl.	Avg.
ERM	_	62.60 ± 0.30	$51.85 {\pm} 5.92$	-	60.13 ± 0.46	30.30
LISA [48]	_	89.20	-	_	_	_
G-DRO [42]	_	1.10 \pm 1.10	_	_	_	_
George [43]	✓	$76.20 {\scriptstyle\pm 2.00}$	_	_	_	_
JTT [34]	\checkmark	$83.80 \pm$ 1.20	68.53 ± 3.29	_	$62.20 \pm$ 1.34	_
CNC [51]	√ ,	88.50 ± 0.30	_	_	_	_
	-/	<u> </u>	CO 00		CO 07	
LfF [38]	<u> </u>	78.00	62.98 ± 2.76	_	62.97 ± 3.22	
ETF-Debias [46]	√ ,	_	_		73.60 ± 1.22	_
Park et al. [39]	✓,	_	_	71.68	_	_
LWBC [22]	✓	Ex. 18 - 1	62.03 ± 2.76	_		35.97 ± 0.49
CDvG+LfF [18]	✓	84.80	_		62.20 ± 0.45	34.60
DebiAN [32]	✓	_	69.88 ± 2.92	_	62.80 ± 0.60	_
MoDAD [40]	✓	89.43 ± 1.69	69.83 ± 0.72	_	68.33 ± 2.89	<u>—</u>
DDB-II (ours)	✓	91.56 ± 0.15	72.81 \pm 1.02	83.15 ± 1.76	70.93 ± 0.14	37.53 ± 0.82
DDR-I (onts)	✓	90.81 ± 0.68	(U.4U± 1.41	81.27±0.88	(4.07 ± 2.37)	$39.80_{\pm 0.50}$
DDB-I (w/ err. set)	✓	90.34 ± 0.41	70.59 ± 0.19	$\underline{82.44 \pm 0.64}$	$71.40 {\scriptstyle\pm 0.92}$	38.12 ± 0.96

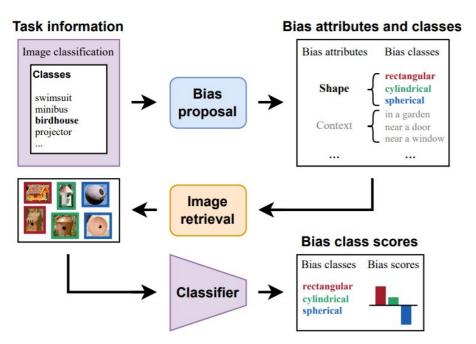
Outline



Bias discovery frameworks

- Methods that inspect trained models to provide information on potential biases;
- Typically, the primary aim is not to debias but to expose bias

Classifier-To-Bias (C2B)



Guimard, Q., D'Incà, M., Mancini, M., & Ricci, E. (2025). Classifier-to-Bias: Toward Unsupervised Automatic Bias Detection for Visual Classifiers. In Proceedings of the Computer Vision and Pattern Recognition Conference (pp. 15151-15161).

Bias-To-Text (B2T)

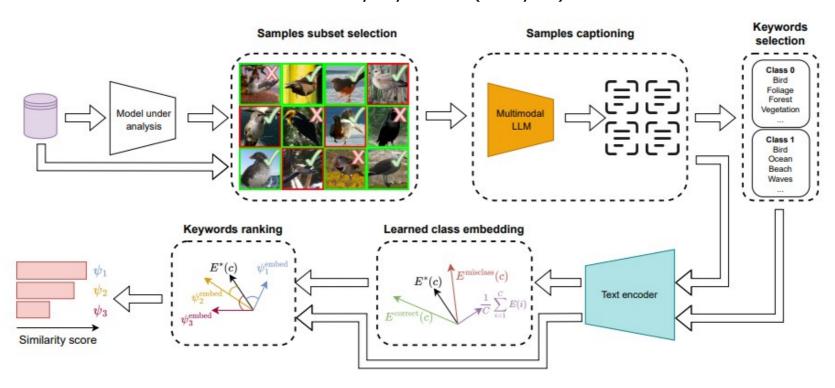
Step 1. Bias keywords generation Step 2. Various applications of keywords

Kim, Y., Mo, S., Kim, M., Lee, K., Lee, J., & Shin, J. (2024). Discovering and mitigating visual biases through keyword explanation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 11082-11092).

Bias discovery frameworks

- Methods that inspect trained models to provide information on potential biases;
- Typically, the primary aim is not to debias but to expose bias

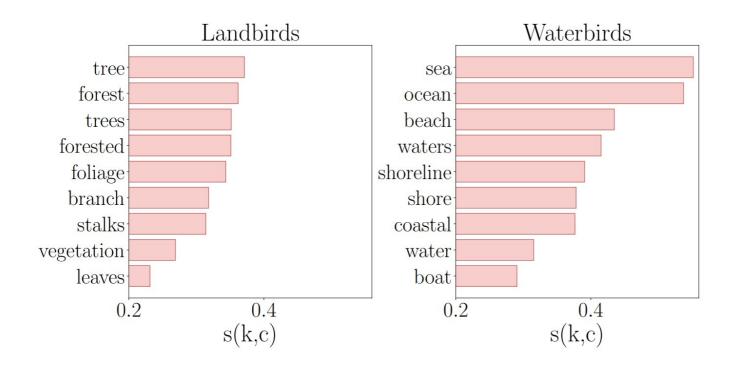
Say My Name (SaMyNa)



Ciranni, M., Molinaro, L., Barbano, C. A., Fiandrotti, A., Murino, V., Pastore, V. P., & Tartaglione, E. (2024). Say My Name: a Model's Bias Discovery Framework. arXiv preprint arXiv:2408.09570.

Bias discovery frameworks

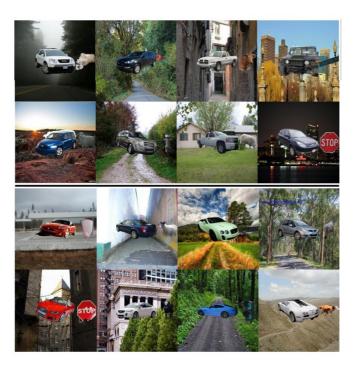
Examples of SaMyNa generated bias keywords on waterbirds



Ciranni, M., Molinaro, L., Barbano, C. A., Fiandrotti, A., Murino, V., Pastore, V. P., & Tartaglione, E. (2024). Say My Name: a Model's Bias Discovery Framework. arXiv preprint arXiv:2408.09570.

Dealing with multiple biases

 In case of multiple biases, many debiasing methods end-up mitigating one attribute while amplifying the dependency on the other one

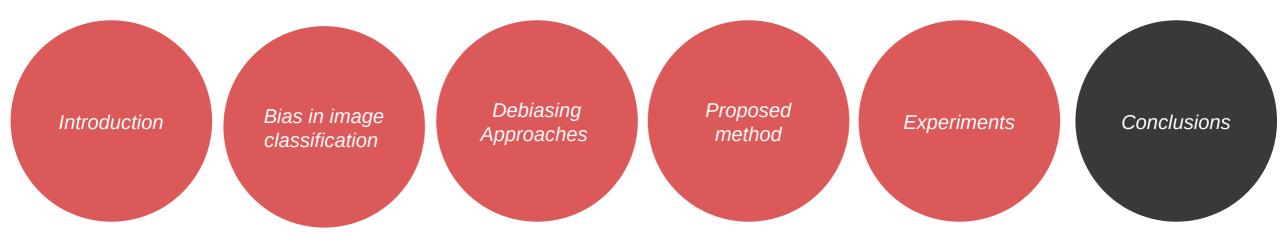


		shortcut reliance				
	I.D. Acc	BG Gap↑	CoObj Gap↑	BG+CoObj Gap 1		
ERM	97.6	-15.3	-11.2	-69.2		
Mixup	98.3	-12.6	-9.3	-61.8		
CutMix	96.6	-45.0 (×2.94 🗓)	-4.8	-86.5		
Cutout	97.8	$-15.8 \ (\times 1.03 \ \square)$	-10.4	-71.4		
AugMix	98.2	-10.3	-12.1 (×1.08 🚇)	-70.2		
SD	97.3	-15.0	-3.6	-36.1		
CF+F Aug	96.8	-16.0 (×1.04 🚇)	+0.4	-19.4		
LfF	97.2	-11.6	-18.4 (×1.64 🖺)	-63.2		
JTT (E=1)	95.9	-8.1	-13.3 (×1.18 🚇)	-40.1		
EIIL (E=1)	95.5	-4.2	-24.7 (×2.21 🖺)	-44.9		
JTT (E=2)	94.6	-23.3 (×1.52 🚇)	-5.3	-52.1		
EIIL (E=2)	95.5	-21.5 (×1.40 🚇)	-6.8	-49.6		
DebiAN	98.0	-14.9	-10.5	-69.0		
LLE (ours)	96.7	-2.1	-2.7	-5.9		

- ◆ Urban cars: target classes are country cars and urban cars;
- bias are backgrounds and co-occuring objects

Li, Z., Evtimov, I., Gordo, A., Hazirbas, C., Hassner, T., Ferrer, C. C., ... & Ibrahim, M. (2023). A whac-a-mole dilemma: Shortcuts come in multiples where mitigating one amplifies others. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 20071-20082).

Outline



Conclusions and takeaways

- Bias is a significant problem harnessing Al's application to real-world problems;
- Bias is inherent in the data as in humans who generate it;
- Shortcuts corresponding to bias learned by a model;
- Methods for model debiasing can be divided into supervised and unsupervised;
- Unsupervised methods can be further categorized as two-step or end-to-end;
- Open challenges include precise bias identification, validation sets, but also unrealistic datasets.
- Bias in specific domain may be hard to discover, and to mitigate.

Contact

vito.paolo.pastore@unige.it

More information on my research on:

vitopaolopastore.github.io

